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1. Introduction

The renormalization flow of certain QCD closed sectors of composite operators is per-

turbatively integrable in the planar limit [1]. This intriguing feature can be studied in

QCD-like theories with supersymmetry where integrability can be understood in the spirit

of AdS/CFT duality [2] in terms of the integrability properties of the dual superstring

theory on AdS5 × S5 [3]. In particular, one can consider the maximally supersymmetric

N = 4 super Yang-Mills theory which is UV finite and superconformally invariant at the

quantum level. There, asymptotic all-loop Bethe Ansatz equations are available for the

full set of psu(2, 2|4) operators [4].

Particularly interesting is the bosonic non compact sl(2) sector. The three loop Bethe

Ansatz equations were derived in [5]. Their prediction have been cofirmed by independent

field theoretical checks at two loops in [6]. The two-loop dilatation operator has also been

constructed algebraically in the su(1, 1|2) ⊃ sl(2) sector [7] and explicitly in the sl(2)

sector [8].

With a major breakthrough, Kotikov, Lipatov, Onishchenko and Velizhanin conjec-

tured a three loop prediction for the anomalous dimension of N = 4 twist-2 superconfor-

mal operators at generic spin in [9] (see also [10]). Their prediction is based the so-called

maximum transcendentality principle. Recently, the principle has been extended and al-

lowed the calculation of the four loop anomalous dimension of twist-3 operators in the sl(2)

sector [11, 12].

A different approach to integrable systems, related to the Bethe Ansatz, is based on the

Baxter Q-operator [13]. Using this method, the two loop dilatation operator in N = 2, 4
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SYM for Wilson operators with scalars and derivatives (the sl(2) sector) as well as the two

loop Baxter operator have been computed in [14]. The all-loop asymptotic generalization of

the Baxter equation appeared in [15]. All-loop extensions to the sl(2|1) sector are described

in [16].

These results strongly support integrability as a quite efficient computing tool for the

calculation of multi-loop anomalous dimensions. However, it seems that the psu(2, 2|4)

symmetry still has to be fully exploited. This is clear in the deep discussion of [4] about

degeneracies in the spectum of anomalous dimensions. The Bethe Ansatz equations have

remarkable structural properties related to supersymmetry. Degeneracies appear relating

sectors built with composite operators with a different number of elementary fields.

This is far beyond what is well known in twist-2. There, all conformal operators fall

in a single supermultiplet [19 – 21] and the anomalous dimension of different channels are

related by supersymmetry and can be expressed in terms of a single universal function

γuniv. The methods of [4] suggest instead that one can expect hidden relations between

operators with different twists.

In this paper, we present a nice example of this mechanism. We consider twist-3

composite operators built with three gauginos. These operators have been studied at two

loops in N = 1, 2, 4 SYM by direct computation of the dilatation operator in [22]. We

provide a simple exact formula for the one-loop lowest anomalous dimension. It matches

the universal function γuniv with suitable shifted argument.

We remark that this degeneracy linking operators with different spin has already ap-

peared in the literature. It has been discussed by Korchemsky and coworkers [17, 18] in

the analysis of the spectrum of compound states of reggeized gluons in planar QCD. There,

one is lead to study the ground states of a noncompact Heisenberg sl(2,C) spin magnet.

The degeneracies discovered in those work cover the one studied in this paper, although

only at the one-loop level.

As a further step, we prove that this universal relation is valid at three loops because

of supersymmetry. We prove this fact by an explicit analysis of the relevant Bethe Ansatz

equations. This is feasible at three loops. Due to the symmetry related reason of this

universality, we feel that is should be possible to prove it at all orders in terms of super-

multiplet rearrangements. We also give a two-loop proof based on the Baxter formalism,

as an extension of the results of [17, 18].

The detailed plan of the paper is as follows. Section 2 is devoted to a complete analysis

at one-loop. Section 3 collects some known two-loop results and shows that they are in

agreement with the one-loop universality. Section 4 proves universality at three loops by

analyzing the Bethe Ansatz equations. Finally, section 5 is devoted to a similar two-loop

proof at the level of the Baxter equation.

2. One-loop anomalous dimension of quasi-partonic operators

We adopt the notation of [23] and consider the following class of single-trace conformal
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Wilson operators

Os,L(0) =
∑

n1+···nL=s

an1,...nL
Tr

{

Dn1

+ X(0) · · ·DnL
+ X(0)

}

, ni ∈ N, (2.1)

where X(0) is a physical component of quantum fields with definite helicity in the underly-

ing gauge theory (scalar, fermion or gauge field), and D+ is a light-cone projected covariant

derivative. The coefficients {an} determine eigenoperators of the dilatation operator. The

total Lorentz spin is s = n1 + · · ·nL. The twist L is, as usual, the classical dimension minus

the Lorentz spin.

At one-loop, it is well-known that the anomalous dimensions of the above operators

are in 1-1 correspondence with the spectrum of a noncompact sl(2) spin chain with L sites.

The elementary spin of the chain is related to the conformal spin η of X which is defined

as η = 1
2 , 1, 3

2 when X is a scalar, gaugino, or gauge field respectively.

The one-loop ground state energy, associated with the lowest anomalous dimension,

can be found easily by the Baxter approach [13]. The Baxter function is a polynomial Q(u)

satisfying the second-order finite-difference equation

(u + i η)L Q(u + i) + (u − i η)L Q(u − i) = tL(u)Q(u). (2.2)

Here tL(u) is a polynomial in u of degree L with coefficients given by conserved charges

tL(u) = 2uL + q2 uL−2 + . . . + qL (2.3)

The lowest integral of motion q2 is related to the total spin of the sl(2) chain, s + Lη,

q2 = −(s + Lη)(s + Lη − 1) + Lη (η − 1), (2.4)

with s = 0, 1, . . ..

In what follows we shall refer to eq. (2.2) as the Baxter equation. The degree of Q(u)

is equal to the total spin s. Up to an irrelevant normalization, one can write

Q(u) =
s

∏

k=1

(u − λk) . (2.5)

If one replaces this expression into eq. (2.2), the roots λ1, . . . , λs are found to obey the

Bethe equations
(

λk + i η

λk − i η

)L

=

s
∏

j=1
j 6=k

λk − λj − i

λk − λj + i
. (2.6)

Solving the Baxter equation eq. (2.2) supplemented by eq. (2.5) one obtains quantized val-

ues of the charges q3, . . . , qL and evaluates the corresponding energy and quasimomentum

as

ε = i (ln Q(i η))′ − i (ln Q(−i η))′ , eiθ =
Q(i η)

Q(−i η)
. (2.7)

The cyclic symmetry of the single-trace operators imposes an additional selection rule for

the eigenstates of the spin magnet, eiθ = 1. Equation (2.7) allows to calculate the energy
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of the spin chain and, then, obtain the one-loop anomalous dimension of Wilson operators

using

∆γ(s) = g2 ε(s) + O(g4), (2.8)

where g2 = g2
YM Nc/(8π2) is the scaled ’t Hooft coupling, fixed in the planar Nc → ∞

limit. In the above expressions, ∆γ(s) = γ(s)−γ(0) is the subtracted anomalous dimension

defined in order to vanish at s = 0.

2.1 Twist-2

Solving the Baxter equation at twist-2 in the three sectors η = 1/2, 1, 3/2, i.e. for the scalar,

gaugino and vector channels denoted by the symbols ϕ, λ,A, one immediately recovers the

known formulae

∆γϕ
L=2(s) = 4S1(s),

∆γλ
L=2(s) = 4S1(s + 1) − 4, (2.9)

∆γA
L=2(s) = 4S1(s + 2) − 6.

Our notation for the (nested) harmonic sums is

Sa(N) =

N
∑

n=1

(sign a)n

na
, Sa1,a2,...(N) =

N
∑

n=1

(sign a1)
n

na1
Sa2,...(n). (2.10)

Alternative expressions with the ψ functions are a little nicer and read

∆γϕ
L=2(s) = 4 (ψ(s + 1) − ψ(1)),

∆γλ
L=2(s) = 4 (ψ(s + 2) − ψ(2)), (2.11)

∆γA
L=2(s) = 4 (ψ(s + 3) − ψ(3)).

Notice that ∆γ ≡ γ in the scalar channel. These results express the well-known fact that

all twist-2 quasipartonic operators are in the same SUSY multiplet and their anomalous

dimension is expressed by a universal function with shifted arguments

γϕ
L=2(s) = γuniv(s),

γλ
L=2(s) = γuniv(s + 1), (2.12)

γA
L=2(s) = γuniv(s + 2).

The universal function γuniv(s) is known at three loops and reads

γuniv(s) =
∑

n≥1

γ
(n)
univ(s) g2 n, (2.13)

– 4 –



J
H
E
P
0
6
(
2
0
0
7
)
0
5
4

where the three loop coefficients are [9]

γ
(1)
univ(s) = 4S1 , (2.14)

γ
(2)
univ(s) = −4

(

S3 + S−3 − 2S−2,1 + 2S1

(

S2 + S−2

)

)

,

γ
(3)
univ(s) = −8

(

2S−3 S2 − S5 − 2S−2 S3 − 3S−5 + 24S−2,1,1,1

+ 6
(

S−4,1 + S−3,2 + S−2,3

)

− 12
(

S−3,1,1 + S−2,1,2 + S−2,2,1

)

−
(

S2 + 2S2
1

)(

3S−3 + S3 − 2S−2,1

)

− S1

(

8S−4 + S2
−2

+ 4S2 S−2 + 2S2
2 + 3S4 − 12S−3,1 − 10S−2,2 + 16S−2,1,1

)

)

,

with all harmonic sums evaluated at argument s.

2.2 Twist-3

The same exercise at twist-3 gives

∆γϕ
L=3(s) = 4S1

(s

2

)

,

∆γλ
L=3(s) = 4S1(s + 2) − 6, (2.15)

∆γA
L=3(s) = 4S1

(s

2
+ 1

)

− 5 +
4

s + 4
.

Again, alternative expressions with the ψ function are

∆γϕ
L=3(s) = 4

[

ψ
(s

2
+ 1

)

− ψ(1)
]

,

∆γλ
L=3(s) = 4 (ψ(s + 3) − ψ(3)), (2.16)

∆γA
L=3(s) = 4

[

ψ
(s

2
+ 2

)

− ψ(1)
]

− 5 +
4

s + 4
.

The scalar channel is very well-known by now. Indeed, the four-loop expression of ∆γϕ
L=3(s)

has been recently computed in [11, 12].

The 3-gaugino scaling operator has an anomalous dimension which is strongly remi-

niscent of the twist-2 supermultiplet. This is a non-trivial effect of supersymmetry since it

relates composite operators with a different number of fields. As we mentioned in the In-

troduction, this one-loop degeneracy has an old story and has been first studied in [17, 18].

The L = 3 operator built with vector fields has an anomalous dimension which is not

related to the other channels in any obvious way. Also, it contains a peculiar rational

contribution. Actually, this expression is not totally surprising. Three-gluon operators

are studied in QCD in [24]. The dilatation operator has an integrable piece H0 plus

a perturbation. The lowest eigenvalue of the integrable piece has eigenvalues given by

eq. (82) of [24]:

ε = 2ψ
(s

2
+ 3

)

+ 2ψ
(s

2
+ 2

)

− 4ψ(1) + 4 = (2.17)

= 2S1

(s

2
+ 2

)

+ 2S1

(s

2
+ 1

)

+ 4 = (2.18)

= 4S1

(s

2
+ 1

)

+
4

s + 4
+ 4. (2.19)
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Apart from the constant, this is the same s dependent combination as in ∆γA
L=3.

Given these interesting one-loop results, one would like to show that the one-loop

relation between the twist-3 gaugino channel and the universal twist-2 anomalous dimension

is not an accident. Before proving it, let us illustrate some available and recent two loop

results that indeed support this conjecture.

3. Additional evidence for universality at two-loops

Three gaugino operators have been studied at two loops in N = 1, 2, 4 SYM by direct

computation of the dilatation operator in [22]. For even spin s, the lowest anomalous

dimension is that of an unpaired state with zero quasimomentum. The DR anomalous

dimension for s = 4, 6 is reported as

∆γλ
L=3(s = 4) =

19

5
g2 +

(

15581

2250
−

19

5
N

)

g4 + · · · , (3.1)

∆γλ
L=3(s = 6) =

341

70
g2 +

(

55402939

6174000
−

341

70
N

)

g4 + · · · . (3.2)

In this channel, we have, at two loops

γλ
L=3(s) = ∆γλ

L=3(s) + Γλ, (3.3)

where the anomalous dimension of the three-gaugino operator without derivative, hence

s = 0, is given by

Γλ = 6 g2 − 12 g4 + · · · . (3.4)

Adding it to ∆γ and replacing N = 4, we get

γλ
L=3(s = 4) =

49

5
g2 −

45619

2250
g4 + · · · , (3.5)

γλ
L=3(s = 6) =

761

70
g2 −

138989861

6174000
g4 + · · · . (3.6)

Comparing with the one, two-loop expressions of γϕ
L=2 we see that we can write in both

cases

γλ
L=3(s) = γuniv(s + 2), s ∈ 2N. (3.7)

It is tempting to conjecture that this relation is actually valid at all orders and for any

even spin s. In the next section we shall provide a very simple and explicit proof that the

conjecture holds true at least at the three loop level. The main tool will be the set of Bethe

Ansatz equations in the sl(2|1) subsector of the N = 4 theory.

4. Proof of universality at three loops

Our proof builds on the results of [25, 16], whose notation we follow. The sl(2|1) sector

of light-cone N = 4 SYM is a convenient truncation suitable for the proof of universality

of γλ
L=3. The elementary fields are a complex scalar X(z) and single-flavour gaugino ψ(z)

– 6 –
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with an arbitrary number of light-cone projected covariant derivatives. The pair (X,ψ)

fills a chiral N = 1 multiplet

Φ(Z) = iX(z) + θ ψ(z), Z = (z, θ). (4.1)

The composite fields in the planar limit are single-traces operators of the form

O(Z1, . . . , ZL) = Tr

{

L
∏

i=1

Φ(Zi)

}

, (4.2)

and can be expanded in components to give scaling fields of the form

Os,L(0) =
∑

n1+···nL=s

an1,...nL
Tr

{

Dn1

+ Ω1(0) · · ·D
nL
+ ΩL(0)

}

, ni ∈ N, (4.3)

with Ωi = X or ψ. The operator O transforms according to the tensor product V⊗L
j of L

copies of the infinite dimensional chiral representation Vj with superconformal spin j = 1.

The irreducible components are associated to superconformal primaries Oα with quantum

numbers α. The lowest weight vectors Ψα in each module can be obtained by Bethe Ansatz

methods. They are eigenstates of the Cartan generators J , J and the quadratic Casimir

C2 = JJ

C2 Ψα = J J Ψα, (4.4)

J Ψα = (m + L)Ψα, (4.5)

J Ψα = m Ψα. (4.6)

The quantum numbers are thus α = [L,m,m]. It can be shown that m,m are non-negative

integers with

1 ≤ m − m ≤ L − 1. (4.7)

The states associated with the highest weight at the boundary m − m = 1 are trivially

related to the states Tr(∂m
+ XL) in the bosonic sl(2) sector. Those at the opposite boundary

m − m = L − 1 are associated with L-gaugino states Tr(∂m
+ ψL). Hence, we can say that

the sl(2|1) sector interpolates between fully bosonic/fermionic states. This is precisely the

framework we need to prove the claimed universality.

A nested Bethe Ansatz valid in this sector is described in [25], according to the methods

of [4, 16]. Up to three loops, the Bethe Ansatz equations read

(

x+
k

x−
k

)L

=

m
∏

j,k=1
j 6=k

x−
k − x+

j

x+
k − x−

j

1 − g2

2 x+

k
x−

j

1 − g2

2 x−

k
x+

j

·
m−m−1

∏

j=1

x+
k − x

(1)
j

x−
k − x

(1)
j

, k = 1, . . . ,m, (4.8)

1 =

m
∏

j=1

x
(1)
k − x+

j

x
(1)
k − x−

j

, k = 1, . . . ,m − m − 1. (4.9)
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In these equations, we have introduced m first level Bethe roots {uk} and m−m−1 second

level roots {u
(1)
k }. The notation is standard

x(u) =
1

2

(

u +
√

u2 − 2 g2
)

, (4.10)

x± = x(u±), (4.11)

u± = u ±
i

2
. (4.12)

The anomalous dimension is expressed in terms of the first level Bethe roots as explained

in details in [25] where a single Baxter equation for the first level roots is derived.

Now to the proof. Let us consider the L = 3 case on the gaugino boundary

m − m = L − 1 = 2, −→ m − m − 1 = 1. (4.13)

Of course, it will be clear that generalizations to higher twists are possible. Solving the

Baxter equation for even m, one finds that the ground state is an unpaired state with

an even distribution of the first level roots and an even Baxter function. This is similar

to what happens at twist 2. There is a single second level root u
(1)
1 . Let x ≡ x(u

(1)
1 ).

As explained in [4], beyond one-loop, it is convenient to consider x as the basic spectral

parameter. The cyclicity constraint reads

m
∏

j=1

x − x+
j

x − x−
j

= 1. (4.14)

We know that the ground state is unpaired. For a non trivial even distribution of first level

roots, a unique solution for x is obtained if x = 0. This can be checked by defining the

phase in the perturbative expansion of x according to the formula

x(u) ≡
u

2

(

1 +

√

1 −
2 g2

u2

)

= u −
g2

2u
+ · · · . (4.15)

Setting x = 0 in the Bethe Ansatz equations eqs. (4.8), we obtain

(

x+
k

x−
k

)L−1

=

m
∏

j,k=1
j 6=k

x−
k − x+

j

x+
k − x−

j

1 − g2

2 x+

k
x−

j

1 − g2

2 x−

k
x+

j

, k = 1, . . . ,m, (4.16)

1 =

m
∏

j=1

x+
j

x−
j

. (4.17)

However, these are precisely the Bethe Ansatz equation for the sl(2) ⊂ su(2|1) sector with

L−1 = 2 fields and total spin m = m+2. It is well known, that these equations reproduce

the correct three loop expression of γuniv, thus proving our conjecture eq. (3.7).

As a check, we have also computed the analytical three loop anomalous dimensions

at several even spins from eqs. (4.8) according to the methods of [11, 12] and verified the

perfect agreement with eq. (3.7), using eqs. (2.14).
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5. Alternative proof in the Baxter formalism

As a further analysis, we now present an alternative proof based on the analysis of the

Baxter equation for the sl(2|1) sector. This is a slightly different approach. In particular,

the second level Bethe root is completely bypassed. The limitation is that the proposed

Baxter equations admit simple polynomial Baxter functions up to L loops (included) for

operators with twist L. Hence, they can be used to prove universality eq. (3.7) between

L = 2 and L = 3 operators at two loops only.

The Baxter equation for the sl(2|1) sector has been derived in [25] and takes the

following form

[

τ(x)τ (x)−(x+ x−)L eΣ(x−)+Σ(x+)
]

Q(u) = (x+)L e∆+(x+)
[

τ(x)−(x−)L eΣ(x−)
]

Q(u+i) (5.1)

+(x−)L e∆
−

(x−)
[

τ(x) − (x+)L eΣ(x+)
]

Q(u − i).

Here, τ and τ are defined as

τ(x) = (x−)L



1 +
∑

k≥1

qk(g)

(x−)L



 , τ(x) = (x+)L



1 +
∑

k≥1

qk(g)

(x+)L



 , (5.2)

where qi(g) are coupling dependent charges, i.e. integrals of motion. At one-loop, the only

non vanishing charge (related to C2) is

q2 = q2 = −m(m + L). (5.3)

The universal quantity ∆σ(x), with σ = ±, admits the following three loop expansion [15]

∆σ(x) = −
g2

x

(

log Q

(

i σ

2

))′

+ (5.4)

−
g4

4x2

[(

log Q

(

i σ

2

))′′

+ x

(

log Q

(

i σ

2

))′′′]

+ O(g6).

Finally, Σ(x) is defined as the half-sum

Σ(x) =
1

2
[∆+(x) + ∆−(x)] . (5.5)

At twist-3 and at the gaugino boundary m = m + 2, we consider the sl(2|1) unpaired

ground state with quantum numbers

α = [L,m,m] = [3, 2n + 2, 2n], n ∈ N, (5.6)

q2 = −m (m + L) = −(2n + 2) (2n + 3) (5.7)

It can be shown that, for this state, the polynomial Baxter function is a polynomial of

degree m = 2n + 2, even under u → −u. Hence, at two loops level, we have simply

Σ(x) = O(g4). (5.8)

– 9 –
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The Baxter equation greatly simplifies and reduces to
[

τ(x) τ (x) − (x+ x−)3
]

Q(u) = (x+)3 e∆+(x+)
[

τ(x) − (x−)3
]

Q(u + i) (5.9)

+(x−)3 e∆
−

(x−)
[

τ(x) − (x+)3
]

Q(u − i).

The first odd charge q1, as well as the higher ones qn with n ≥ 3, vanish

q1 = q1 = 0, qn = qn = 0, n ≥ 3. (5.10)

Imposing these conditions on τ , τ and simplifying, one obtains
[

(x+)2 + (x−)2 + q2

]

Q(u) = (x+)2 e∆+(x+) Q(u + i) + (x−)2 e∆
−

(x−) Q(u − i). (5.11)

On the other hand, one can write down the Baxter equation for the ground state at twist-2,

again at the gaugino boundary. In particular, we can consider the unpaired ground state

with quantum numbers

α′ = [L′,m′,m′] = [2, 2n + 2, 2n + 1], n ∈ N, (5.12)

q′2 = −m′ (m′ + L′) = −(2n + 2) (2n + 3). (5.13)

This state has also a Baxter function which is an even polynomial of degree m′ = 2n + 2,

and we have again q1 = q1 = 0 and qn = qn = 0 for n ≥ 3. The Baxter equation has

immediately the precise form eq. (5.11) with q2 → q′2. Since q2 = q′2, we conclude that the

Baxter function for the state α is equal to the one for α′. This leads to eq. (3.7), because

the formula for the anomalous dimension depends only on α through Q [25].

6. Conclusions

In summary, we have shown that the lowest anomalous dimension of 3-gaugino operators in

N = 4 SYM with even spin obey a remarkable universality property. It can be expressed

in terms of the universal anomalous dimension valid in the twist-2 supermultiplet. We

have proved this property at three loops as a nice exercise illustrating a general mechanism

related to the hidden psu(1|1) symmetries of the Bethe Ansatz equations.

This kind of phenomena has been first discussed in [4]. Here, we have given a simple

explicit example. The known two loop calculations are immediately reproduced, plus a

novel three loop prediction. Since supersymmetry is responsible for this degeneracy relating

different twist operators, it would be worth proving the universality beyond three loops in

terms of the structure of twist-3 supermultiplets.

We have also proved universality working in the framework of the (nested) Baxter

equation, thus bypassing the analysis of the second level roots. However, we believe that

the Bethe Ansatz equations are more enlightening, since this kind of mechanisms is known

to work in larger sectors, like su(1, 1|2) [4] where a Baxter equation is not yet available.

Also, the Baxter function polynomiality breaks down at L + 1 loop level for operators

with twist L. This appears to be a weak point of the Baxter approach deserving improve-

ment. For instance, it is known that the Bethe Ansatz equations predict the correct γuniv

at three loops in twist-2. It seems that the Bethe Ansatz equations are more suitable to

explore the degeneracies associated with the full psu(2, 2|4) algebra of the N = 4 theory.

– 10 –
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